详细解读你所不了解的“大数据”

网上有关“详细解读你所不了解的“大数据””话题很是火热,小编也是针对详细解读你所不了解的“大数据”寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

详细解读你所不了解的“大数据”

进入2012年,大数据(bigdata)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的证券公司等写进了投资推荐报告。

一、大数据出现的背景

进入2012年,大数据(bigdata)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的证券公司等写进了投资推荐报告。

数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然现在企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。

最早提出大数据时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”“大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。

大数据在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量,大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。

二、什么是大数据?

信息技术领域原先已经有“海量数据”、“大规模数据”等概念,但这些概念只着眼于数据规模本身,未能充分反映数据爆发背景下的数据处理与应用需求,而“大数据”这一新概念不仅指规模庞大的数据对象,也包含对这些数据对象的处理和应用活动,是数据对象、技术与应用三者的统一。

1、大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据对象既可能是实际的、有限的数据集合,如某个政府部门或企业掌握的数据库,也可能是虚拟的、无限的数据集合,如微博、微信、社交网络上的全部信息。

大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,“大数据”指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。

亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。研发小组对大数据的定义:“大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。”Kelly说:“大数据是可能不包含所有的信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。

2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。

3、大数据应用,是指对特定的大数据集合,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据集合和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值。

当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。

三、大数据的类型和价值挖掘方法

1、大数据的类型大致可分为三类:

1)传统企业数据(Traditionalenterprisedata):包括 CRMsystems的消费者数据,传统的ERP数据,库存数据以及账目数据等。

2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetailRecords),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。

3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。

2、大数据挖掘商业价值的方法主要分为四种:

1)客户群体细分,然后为每个群体量定制特别的服务。

2)模拟现实环境,发掘新的需求同时提高投资的回报率。

3)加强部门联系,提高整条管理链条和产业链条的效率。

4)降低服务成本,发现隐藏线索进行产品和服务的创新。

四、大数据的特点

业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:

1、是数据体量巨大

数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;百度资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。

2、是数据类别大和类型多样

数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。

3、是处理速度快

在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。

4、是价值真实性高和密度低

数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。

五、大数据的作用

1、对大数据的处理分析正成为新一代信息技术融合应用的结点

移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。

大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(RamayyaKrishnan,卡内基·梅隆大学海因兹学院院长)。

2、大数据是信息产业持续高速增长的新引擎

面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

3、大数据利用将成为提高核心竞争力的关键因素

各 行各业的决策正在从“业务驱动”转变“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。

4、大数据时代科学研究的方法手段将发生重大改变

例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。

六、大数据的商业价值

1、对顾客群体细分

“大数据”可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和“大数据”的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。

2、模拟实境

运用“大数据”模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。

云计算和“大数据”分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以数据化。“大数据”技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案投入回报最高。

3、提高投入回报率

提高“大数据”成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。“大数据”能力强的部门可以通过云计算、互联网和内部搜索引擎把”大数据”成果和“大数据”能力比较薄弱的部门分享,帮助他们利用“大数据”创造商业价值。

4、数据存储空间出租

企业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。目前已有多个公司推出相应服务,如亚马逊、网易、诺基亚等。运营商也推出了相应的服务,如中国移动的彩云业务。

5、管理客户关系

客户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失率、提高客户消费等。对中小客户来说,专门的CRM显然大而贵。不少中小商家将飞信作为初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发布新产品预告、特价销售通知,完成售前售后服务等。

6、个性化精准推荐

在运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐、IPTV视频节目推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。

以日常的“垃圾短信”为例,信息并不都是“垃圾”,因为收到的人并不需要而被视为垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样“垃圾短信”就成了有价值的信息。在日本的麦当劳,用户在手机上下载优惠券,再去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。

7、数据搜索

数据搜索是一个并不新鲜的应用,随着“大数据”时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。

运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典型应用如中国移动的“盘古搜索”。

七、大数据对经济社会的重要影响

1、能够推动实现巨大经济效益

比如对中国零售业净利润增长的贡献,降低制造业产品开发、组装成本等。预计2013年全球大数据直接和间接拉动信息技术支出将达1200亿美元。

2、能够推动增强社会管理水平

大数据在公共服务领域的应用,可有效推动相关工作开展,提高相关部门的决策水平、服务效率和社会管理水平,产生巨大社会价值。欧洲多个城市通过分析实时采集的交通流量数据,指导驾车出行者选择最佳路径,从而改善城市交通状况。

3、如果没有高性能的分析工具,大数据的价值就得不到释放

对大数据应用必须保持清醒认识,既不能迷信其分析结果,也不能因为其不完全准确而否定其重要作用。

1)由于各种原因,所分析处理的数据对象中不可避免地会包括各种错误数据、无用数据,加之作为大数据技术核心的数据分析、人工智能等技术尚未完全成熟,所以对计算机完成的大数据分析处理的结果,无法要求其完全准确。例如,谷歌通过分析亿万用户搜索内容能够比专业机构更快地预测流感暴发,但由于微博上无用信息的干扰,这种预测也曾多次出现不准确的情况。

2)必须清楚定位的是,大数据作用与价值的重点在于能够引导和启发大数据应用者的创新思维,辅助决策。简单而言,若是处理一个问题,通常人能够想到一种方法,而大数据能够提供十种参考方法,哪怕其中只有三种可行,也将解决问题的思路拓展了三倍。

所以,客观认识和发挥大数据的作用,不夸大、不缩小,是准确认知和应用大数据的前提。

八、总结

不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。

1、从大数据的价值链条来分析,存在三种模式:

1)手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。

2)没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,Oracle等。

3)既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。

2、未来在大数据领域最具有价值的是两种事物:

1)拥有大数据思维的人,这种人可以将大数据的潜在价值转化为实际利益;

2)还未有被大数据触及过的业务领域。这些是还未被挖掘的油井,金矿,是所谓的蓝海。

大数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于数据的应用需求和应用水平进入新的阶段。

谈谈对大数据的理解和认识!

哲学如何认识大数据时代

最近几年,数据问题进入哲学视野。对于哲学家们探索的数据本质特征,我们可以从以下几个方面来把握。

数据与大数据

技术进步,主要是计算机、网络和各种类型的传感器以及云技术、分布式计算与存储等海量存储技术的广泛应用和运算能力极速进步,使得数据概念被大数据概念取代。数据量增加速度之快,大致可以这样描述:最近两年生成的数据量,相当于此前一切时代人类所生产的数据量的总和。

大数据指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。大数据的特征,除了巨大、快速、多样多变之外,没有其他。因此,大数据本质上还是数据。

在大数据的上述特征中,其多样多变性值得特别关注。它表现为所生成数据格式的多样,如文字、、视频等各有多种不同的格式,取决于生成数据的技术与设备,却反映出数据生产的时代性以及数据处理的能力与条件,也反映出被描摹自然和社会的多姿多彩。另外,随着技术发展和数据量急剧增长,新的数据格式还会层出不穷,多变和多样特征更加突出。

大数据既是一个技术概念,又是一个商业概念,它的出现,有其特定背景,即IT领域的商业和渲染新技术的考量。大数据包揽了人类获取数据的所有途径,提示哲学研究一个全新时代的到来,这个时代的先声,很久远之前就已经响起,那时,它仅仅被称作数据。在我们的讨论中,主要考虑数据与哲学的关联。

数据与认识

这里的认识,指的是人的认识,是人对外部世界的认识。

大数据的出现和引起关注,使得一个事实得到确认,这就是,数据覆盖了人类对于外部世界的感知。感官及其所获得的经验退居到显示屏之后,退居到各种类型的技术装置之后,这些装置将自然和外部世界的映像“转译”成人类感官可以接受的图像、声音甚至触觉和嗅觉味觉。这既是技术发展的必然,又是始料未及的情况。如果说,此前,哲学还试图在技术系统生成的数据之外寻找世界的直观映像,到了大数据时代,这种人类的直接感知即使没有被完全取代,也失去了其传统意义上的优势。一言以蔽之,哲学,需要从数据中寻求对世界的认识,舍此即失去认识的来源。

这似乎是一个惊人的变故,其实不然。在影响人类认识的议题上,大数据带来的变化,只是数量和范围上的,并非根本意义上的改变。事实上,回顾历史,我们发现,我们的对外部世界的感知,从来都是依赖于某些技术装置的,也就是说,人的认识,其实是通过数据获得的。

最早的技术装置,可能是直尺,它用于测量长度,例如田亩;更早的述说技术装备,也许是绳结,它用来述说一件重要的事件。在我国,从河北泥河湾先民打造石器,到安阳殷墟龟甲上刻画的文字,都可以看作是某种“数据”,表达着人类对外部世界的某种认知。而面对着所有这些早期的承载数据的技术装备,人们获得对外部世界的某种最早的抽象认识。古代人先后发明过算筹、斗和称、漏刻、浑象仪、量角器等等,无不是用来产生认知外部世界的数据,人们也发明笔、纸张、雕版印刷术,也是用来记录和生产数据。依托所有这些,数据成为人们认识的依据,思考的源泉,表达的工具。

近代以来,西方的技术和科学异军突起,望远镜、显微镜、六分仪、光谱仪、质谱仪乃至加速器、射电望远镜相继出现,成为人类认识外部世界的有力工具。这些技术装备产生的数据成为近现代思想的新的依托。到了当代,伴随着电子计算机的强大数据处理能力的出现,各种延伸和阔展人类感官感知能力的器皿设备层出不穷,终于完全或接近于完全取代人类对外部世界的直接感知,通过把数据呈现给人类,成为人类认识的来源。这就是大数据的时代。

关键点在于,我们所知的世界,全部是数据表达的,其中一部分获得理解和解释,更多的只是数据,没有得到解释甚至没有得到关注,它只是像自在自然那样在那里,等待人们去搜索发现它,解释它,运用它。

数据与本体

根据上述认识,似乎可以通过观察数据的形成和生产,来理解哲学与科学的在解释客观自然议题上彼此消长。

在近代科学初兴时期,它并没有从传统哲学中分离出来,它被冠之以自然哲学。与之相并行不悖的,有哲学本体论和形而上学。后两者都是试图以某些观念描述和解释外部自然,寻求事物的本质,并在哲学领域合法存在。伽利略、牛顿等人推崇的使用先进观测和实验手段观察与调控自然,用数学述说自然过程。当这一切成为风气之后,哲学本体论逐渐衰退,哲学似乎放弃了对客观世界的描蓦和解释,让位于自然科学。

最后一位试图运用科学数据来解释自然的哲学家是康德,他研习了牛顿的运动力学和天体力学,提出宇宙演化学说。然而,拉普拉斯在康德基础上,用物理理论和数学表述了星云说,在无限时空中的恒星和星系演化学说。拉普拉斯之后,科学之描摹自然优越于传统哲学得到公认。

一般认为,在经典科学时代,哲学与科学在描摹自然方面的差异,在于是否运用数据和使用数学方法。今天我们发现,这并非全部问题所在。经典时代,直至大数据崛起的今天,自然科学的确在使用各种技术装备获得的数据方面占据优势地位,哲学则固守传统的概念分析和一般推理方法,这还是指的好的哲学。这与其说是哲学落后于科学,勿宁说人类获得数据的能力尚有不逮,给传统哲学留有施展余地。

大数据的出现,包围了人类认知世界的所有方面,情况发生变化。在科学界开始讨论并实施“计算一切”的时候,同时也给哲学重新回到讨论本体打开方便之门。这里发生的变化是,数据成为认知的源泉,思维的质料;我们对世界的解释转变为对数据的解读,舍此无他。大数据的出现,使得我们发现,我们所知的称作外部世界的东西,是通过数据来呈现的,当我们寻求世界的本质和意义时,我们实际上是在数据中徜徉;当我们觉得有所发现有所体悟时,实际上是自觉找到了一些数据之间的关联。

数据的物理学气质

所谓物理学气质,指的是思考事物的本质,从原理层面上对事物的本质进行探究,揭示出事物的基本规律。当前备受热议的数据和大数据是否具有揭示事物基本规律的功能,可能还有待于观察,但是,数据,就其现象而言,似乎已经展示出某种物理学气质,考察这一特性,既有利于认识数据的本质,也有利于深化对物理学的认识。

这里所说的物理学,主要指的是量子力学。

众所周知,量子力学无论在理论上还是在应用上都获得巨大成功,在场论、粒子物理和天体物理学研究上都扮演者基础角色,在固体物理、半导体物理以及超导物理等应用学科上都有极出色表现。量子力学与哲学的联系,比其他任何自然科学领域都要来得紧密,其中最重要的就是认识论问题。

量子力学发现,建立在测不准关系基础上的认识,受到基本物理原理的限制,客观世界原则上不可能真正被观察到,我们只能根据物理测量结果认识世界。而测量本身形成对客观世界的干扰,导致无法真正认清它的本来面目。所以,我们对于世界的认识,唯一来源就是测量的结果,即所谓经验。

量子力学的这一认识原则引发将近一百年的讨论,至今未能平息。

尼尔斯·玻尔认为我们必须接受量子力学给出的认识原则,承认和接受自然作出的安排,量子力学已经很好地描绘了自然;爱因斯坦则不愿接受玻尔的“绥靖哲学”,他觉得一定是量子力学本身的不完备造成,人对自然的认识应该是能够穷尽的,不可能也不应该像量子力学所描绘的那样。

当我们回顾前述数据与大数据的认识论与本体论含义时,就明白,一直以来有关量子力学问题的争论,本质上就是对于数据的意义的争论。显然,爱因斯坦不愿意接受数据给出的结果,以及对于数据的解释,而玻尔则认为数据揭示的自然正是自然本体,无论我们是不是喜欢它。

有趣的是,人们一直在争论量子力学的测量问题,此前却几乎从来没有人意识到测量的结果本身就是数据,而数据已经成为事实上的认识来源。离开数据,我们对于世界一无所知。

在这个大数据时代,当我们认识到,数据正是我们认识世界的源泉,所谓世界其实就是数据构成的,我们也会看到数据本身所具有的物理学气质,正像量子力学所强调的那样,世界隐藏在经验表象背后,我们所能谈论的,只是经验本身。

以上是小编为大家分享的关于哲学如何认识大数据时代的相关内容,更多信息可以关注环球青藤分享更多干货

随着大数据的概念提出,越来越多的人,开始关注数据,注重数据带来的巨大的价值。大家谈论的也都是与大数据相关的专业话题了,无论是商业BI,还是阿里云。都是越来越多的行业内部人员乃至关注大数据的看客的讨论热点了。

大数据的鼻祖又是什么呢?

大数据现实体现最初是人口普查,最早是在美国,10年为一个周期做一次人口普查工作,第一次,在1880年用了8年做完,到1890年,人口继续增长,经过科学的预测,如果还是按照老方法去做,需用13年做完,这显然跟不上时代的要求。所以人们开始从记录,采集,整理,分析等多个领域寻求加快数据分析的速度,大数据的概念也慢慢被提出。

大数据在我们现在生活有哪些体现?

现如今,大数据体现最多的可能是社交网络之中了比如:facebook,微信等网络社交平台。其中也不乏实际应用的例子。

微信几乎每个人都有,但微信的朋友圈可以向定向的人群发送指定的广告,还可以选择地区,可以选择性别,年纪分类,教育程度分类,给所有用户进行初步分类之后,再是根据你朋友圈的发文或者交流信息进行提取分析,进一步给每个客户贴上独特的标签,最后把相关信息给到销售部门,进行精准营销。

如今还有绝大多数的公司对于大数据渴望又不知道如何下手,其中大致包括两个方面。

1、想做数据分析,但是之前没有相关的数据意识,基础数据丢失或从未搜集,或者数据孤岛严重,行业数据相对独立而难以共享。

2、数据产生的体量大,维度高,提取难度大。例如某个知名商业银行的信用卡部门,每天收集大量的个人客户的多维度信息,面对大量信心无法价值化,因为涉及个人隐私和安全,数据不可买卖,又不知道如何内部进行分析促进其他相关业务增长。

此外,在整个企业的运作过程还可以分为交易数据和交互数据。

农夫山泉,几年前销量并不如今,当时他们基本上只掌握了大量的交易的数据,通过分析得出,农夫山泉的利润始终上不来,是因为运输成本很高,如何降低运输成本成为问题的关键点,交互数据的需求成为至关重要的一环,所以决定,每个采集人员每天到10至20个销售点,取收集大量的交互数据,其中包括水的位置,排列形状,天气,优惠活动,市场反馈等一系列交互数据,一个月一个人收集的信息量大约3个TB,继而委托sap公司进行分析开发出物流成本控制处理系统,从而进行运输预测,运输安排和中转站的一系列重新部署,最终直接降低运输成本,提高了运输效果,终于坐到饮用水市场第一的位置。

通过今天的介绍,希望给大家一些对于大数据的基本认识,也希望大家一同关注大数据发展,共同分享大数据带来的惊喜。如果您还存在疑惑或是想要了解更多,欢迎关注西线学院。

关于“详细解读你所不了解的“大数据””这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(3)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 零毓琳的头像
    零毓琳 2026年01月14日

    我是天宇号的签约作者“零毓琳”

  • 零毓琳
    零毓琳 2026年01月14日

    本文概览:网上有关“详细解读你所不了解的“大数据””话题很是火热,小编也是针对详细解读你所不了解的“大数据”寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够...

  • 零毓琳
    用户011404 2026年01月14日

    文章不错《详细解读你所不了解的“大数据”》内容很有帮助

联系我们:

邮件:天宇号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信